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6 Sampling and Reconstruction

6.1 Sampling

Definition 6.1. Sampling is the process of taking a (sufficient) number of
discrete values of points on a waveform that will define the shape of wave
form.
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Figure 40: The Sampling Process

• In this class, the signal is sampled at a uniform rate, once every Ts
seconds.

m[n] = m(nTs) = m(t)|t=nTs.

• We refer to Ts as the sampling period, and to its reciprocal fs = 1/Ts
as the sampling rate which is measured in samples/sec [Sa/s].

• At this stage, we assume “infinite” precision (no quantization) for each
value of m[n].
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• The reverse process is called “reconstruction”.

6.2. Sampling = loss of information? If not, how can we recover the original
waveform back.

• The more samples you take, the more accurately you can define a wave-
form.

• Obviously, if the sampling rate is too low, you may experience distortion
(aliasing).

• The sampling theorem, to be discussed in the section, says that when
the waveform is band-limited, if the sampling rate is fast enough, we can
reconstruct the waveform back and hence there is no loss of information.

◦ This allows us to replace a continuous time signal by a discrete
sequence of numbers.

◦ Processing a continuous time signal is therefore equivalent to pro-
cessing a discrete sequence of numbers.

◦ In the field of communication, the transmission of a continuous
time message reduces to the transmission of a sequence of numbers.

Example 6.3. Mathematical functions are frequently displayed as contin-
uous curves, even though a finite number of discrete points was used to
construct the graphs. If these points, or samples, have sufficiently close
spacing, a smooth curve drawn through them allows us to interpolate in-
termediate values to any reasonable degree of accuracy. It can therefore be
said that the continuous curve is adequately described by the sample points
alone.

Example 6.4. Plot y = x2.
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Example 6.5. In Figure 41, we plot the function g(t) = sin(100πt) from
0 to 1 by connecting the values of the function at fifty uniformly-spaced
points.

Example: sin(100t) (1/4)
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Figure 41: Plot of the function g(t) =
sin(100πt) from 0 to 1 by connecting the val-
ues at fifty uniformly-spaced points.

Although the plot shows the correct shape of the sine wave, the perceived
frequency is just 1 Hz.

Theorem 6.6. Sampling Theorem: In order to (correctly and com-
pletely) represent an analog signal, the sampling frequency, fs, must be
at least twice the highest frequency component of the analog signal.

6.7. If the conditions of the sampling theorem are not satisfied, we expe-
rience an effect called aliasing in which different signals become indistin-
guishable (or aliases of one another) when sampled.

• The term “aliasing” also refers to the distortion or artifact that results
when the signal reconstructed from samples is different from the original
continuous signal.

Example 6.8. In Example 6.5, the frequency of the sine wave is 50 Hz.
Therefore, we need the sampling frequency to be at least 100.

6.9. For now, instead of trying to infer the “perceived” frequency by an-
alyzing the plot of the function in the time domain, it is easier to use our
plotspect function to visualize the location of the peaks (of the delta func-
tions) in the frequency domain.
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Example 6.10. Suppose the sampling frequency is 200 samples/sec. The
analog signal should not have the frequency higher than 100 Hz. This is
illustrated in Figure 42 in which cosine functions of different frequencies are
sampled with fs = 200.
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Figure 42: Our plotspect function can be used to visualize the “perceived” frequency of
a sampled signal.

6.11. Steps to find the “perceived” frequency of the sampled signal when
the sampling rate is fs:
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(a) For cos (2π(f0)t), we may use the “folding technique”:

(i) Consider the window of frequency from 0 to fs
2 .

(ii) Start from 0, increase the frequency to f0.
Fold back at 0 and fs

2 if necessary.

Remark: By the symmetry in the spectrum of cosine, we can always
give a nonnegative answer for the perceived frequency.

(b) For ej2π(f0)t, we use the “tunneling technique”:

(i) Consider the window of frequency from −fs
2 to fs

2 .

(ii) Start from 0.

i. If f0 > 0, increase the frequency to f0 (going to the right).
Restart at −fs

2 when fs
2 is reached.

ii. If f0 < 0, decrease the frequency to f0 (going to the left).
Restart at +fs

2 when −fs
2 is reached.

Remark: A cosine function at frequency f0 can also be thought of as
a combination of two complex exponential at frequency f0 and −f0.
Therefore, we can also use the tunneling technique to analyze the co-
sine function as well by looking at its individual complex-exponential
components.

(c) We will study a more general analysis in Section 6.3.

Example 6.12. Find the perceived frequency of cos (300πt) when the sam-
pling rate is 200 [Sa/s].

Example 6.13. Find the perceived frequency of e300πt when the sampling
rate is 200 [Sa/s].
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Example 6.14. Let’s consider a signal that is closer to Example 6.5. Sup-
pose we consider cos (100πt). The sampling rate used is 49 [Sa/s]. Find the
perceived frequency.

Example 6.15. Now, let’s consider the signal sin (100πt) discussed in Ex-
ample 6.5. Again, the sampling rate used is 49 [Sa/s]. Find the perceived
signal.

Example 6.16. Application of the sampling theorem: In telephony, the
usable voice frequency band ranges from approximately 300 Hz to 3400 Hz.
The bandwidth allocated for a single voice-frequency transmission channel
is usually 4 kHz, including guard bands, allowing a sampling rate of 8 kHz
to be used as the basis of the pulse code modulation system used for the
digital PSTN.

Definition 6.17.

(a) Given a sampling frequency, fs, the Nyquist frequency is fs/2.

(b) Given the highest (positive-)frequency component fmax of an analog
signal,

(i) the Nyquist sampling rate is 2fmax and

(ii) the Nyquist sampling interval is 1/(2fmax).
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6.18. For the remaining analysis in this section, we will use g(t) to denote
the signal under consideration. You may replace g(t) below by m(t) if you
want to think of it as an analog message to be transmitted by a communi-
cation system. We use g(t) here because the results provided here work in
broader setting as well.

6.2 Ideal Sampling

Definition 6.19. In ideal sampling, the (ideal instantaneous) sampled
signal is represented by a train of impulses whose area equal the instanta-
neous sampled values of the signal

gδ (t) =
∞∑

n=−∞
g [n]δ (t− nTs) .

6.20. The Fourier transform Gδ(f) of gδ (t) can be found by first rewriting gδ (t) as

gδ (t) =

∞∑
n=−∞

g (nTs)δ (t− nTs) =

∞∑
n=−∞

g (t)δ (t− nTs)

= g (t)
∞∑

n=−∞
δ (t− nTs).

Multiplication in the time domain corresponds to convolution in the frequency domain. Therefore,

Gδ (f) = F {gδ (t)} = G (f) ∗ F

{ ∞∑
n=−∞

δ (t− nTs)

}
.

For the last term, the Fourier transform can be found by applying what we found in Example
4.4125:

∞∑
n=−∞

δ (t− nTs)
F−−−⇀↽−−−
F−1

fs

∞∑
k=−∞

δ (f − kfs).

This gives

Gδ (f) = G (f) ∗ fs
∞∑

k=−∞
δ (f − kfs) = fs

∞∑
k=−∞

G (f) ∗ δ (f − kfs).

Hence, we conclude that

gδ (t) =
∞∑

n=−∞
g [n]δ (t− nTs)

F−−⇀↽−−
F−1

Gδ (f) = fs

∞∑
k=−∞

G (f − kfs). (75)

In words, Gδ (f) is simply a sum of the scaled and shifted replicas of G(f).
25We also considered an easy-to-remember pair and discuss how to extend it to the general case in 4.42.
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6.21. As usual, we will assume that the signal g(t) is band-limited to B
Hz ((G(f) = 0 for |f | > B)).

(a) When B < fs/2 as shown in Figure 43, the replicas do not overlap and
hence we do not need to spend extra effort to find their sum.Ideal Sampling: MATLAB Exploration
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Figure 43: The Fourier
transform Gδ(f) of gδ (t)
when B < fs/2

(b) When B > fs/2 as shown in Figure 44, overlapping happens in the
frequency domain. This spectral overlapping of the signal is (also)
commonly referred to as “aliasing” mentioned in 6.7. To find Gδ(f),
dont forget to add the replicas

-3 -2 -1 0 1 2 3
0

0.5

1

f [f
s
]

[A
]

G(f)

-3 -2 -1 0 1 2 3
0

0.5

1

f [f
s
]

[A
 f s]

G

(f)

Ideal Sampling: MATLAB Exploration

1

B-B

1
2െ

1
2

The Fourier 
transform of 
the original 
signal

The Fourier 
transform of 
the (ideal) 
sampled signal

Figure 44: The Fourier
transform Gδ(f) of gδ (t)
when B > fs/2
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6.22. Remarks:

(a) Gδ (f) is “periodic” (in the frequency domain) with “period” fs.

• So, it is sufficient to look at Gδ (f) between ±fs
2

(b) The MATLAB script plotspect that we have been using to visualize
magnitude spectrum also relies on sampled signal. Its frequency domain
plot is between ±fs

2 .

(c) Although this sampling technique is “ideal” because it involves the use
of the δ-function. We can extract many useful conclusions.

(d) One can also study the discrete-time Fourier transform (DTFT) to look
at the frequency representation of the sampled signal.

6.3 Reconstruction

6.23. From (75), we see that when the sampling frequency fs is large
enough, the replicas of G(f) will not overlap in the frequency domain. In
such case, the original G(f) is still intact and we can use a low-pass filter
with gain Ts to recover g(t) back from gδ (t).

6.24. To prevent aliasing (the corruption of the original signal because its
replicas overlaps in the frequency domain), we need

Theorem 6.25. A low-pass signal g whose spectrum is band-limited to
B Hz (G(f) = 0 for |f | > B) can be reconstructed (interpolated) exactly
(without any error) from its sample taken uniformly at a rate (sampling
frequency/rate) fs > 2B Hz (samples per second).[5, p 302]

6.26. Ideal Reconstruction: Continue from 6.23. Assuming that fs >
2B, the low-pass filter that we should use to extract g(t) from Gδ(t) should
be

HLP (f) =


|f | ≤ B,
B < |f | < fs −B,
|f | ≥ fs −B,
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In particular, for “brick-wall” LPF, the cutoff frequency fcutoff should be
between B and fs −B.

6.27. Reconstruction Equation: Suppose we use fs
2 as the cutoff fre-

quency for our “brick-wall” LPF in 6.26,

The impulse response of the LPF is hLP (t) = sinc
(

2π
(
fs
2

)
t
)

= sinc(πfst).

The output of the LPF is

gr(t) = gδ (t) ∗ hLP (t) =

( ∞∑
n=−∞

g [n]δ (t− nTs)

)
∗ hLP (t)

=
∞∑

n=−∞
g [n]hLP (t− nTs) =

∞∑
n=−∞

g [n] sinc (πfs (t− nTs)) .

When fs > 2B, this output will be exactly the same as g(t):

g (t) =
∞∑

n=−∞
g [n] sinc (πfs (t− nTs)) (76)

• This formula allows perfect reconstruction the original continuous-time
function from the samples.

• At the sampling instants t = nTs, all sinc functions are zero at these
times save one, and that one yields g(nTs) which is the correct values.

• Note that at time t between the sampling instants, g(t) is interpolated
by summing the contributions from all the sinc functions.

• The LPF is often called an interpolation filter, and its impulse response
is called the interpolation function.
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Figure 45: Application of the reconstruction equation

Example 6.28. In Figure 45, a signal gr(t) is reconstructed from the sam-
ples value g[n] via the reconstruction equation (76).

Example 6.29. We now return to the sampling of the cosine function (si-
nusoid).
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Figure 46: Reconstruction of the
signal g(t) = cos(2π(2)t) by its
samples g[n]. The upper plot uses
Ts = 0.4. The lower plot uses
Ts = 0.2.

Theorem 6.30. Sampling theorem for uniform periodic sampling: If
a signal g(t) contains no frequency components for |f | ≥ B, it is completely
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described by instantaneous sample values uniformly spaced in time with
sampling period Ts ≤ 1

2B . In which case, g(t) can be exactly reconstructed
from its samples (. . . , g[−2], g[−1], g[0], g[1], g[2], . . .) by the reconstruction
equation (76).

6.31. Remarks:

• Need a lot of g[n] for the reconstruction.

• Practical signals are time-limited.

◦ Filter the message as much as possible before sampling.

6.32. The possibility of fs = 2B:

• If the spectrum G(f) has no impulse (or its derivatives) at the highest
frequency B, then the overlap is still zero as long as the sampling rate
is greater than or equal to the Nyquist rate, that is, fs ≥ 2B.

• If G(f) contains an impulse at the highest frequency ±B, then fs = 2B
would cause overlap. In such case, the sampling rate fs must be greater
than 2B Hz.

Example 6.33. Consider a sinusoid g(t) = sin (2π(B)t). This signal is
bandlimited to B Hz, but all its samples are zero when uniformly taken at
a rate fs = 2B, and g(t) cannot be recovered from its (Nyquist) samples.
Thus, for sinusoids, the condition of fs > 2B must be satisfied.

Let’s check with our formula (75) for Gδ(f). First, recall that

sinx =
ejx − e−jx

2j
=

1

2j
ejx − 1

2j
e−jx.
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Therefore,

g (t) = sin (2π (B) t) =
1

2j
ej2π(B)t − 1

2j
e−j2π(B)t = −1

2
jej2π(B)t +

1

2
jej2π(−B)t

and

Note that G(f) is pure imaginary. So, it is more suitable to look at the
plot of its imaginary part. (We do not look at its magnitude plot because
the information about the sign is lost. We also do not consider the real part
because we know that it is 0.)

6.34. A maximum of 2B independent pieces (samples/symbols) of infor-
mation per second can be transmitted, errorfree, over a noiseless channel of
bandwidth B Hz [4, p 260].

• Start with 2B pieces of information per second. Denote the sequence
of such information by mn.

• Construct a signalm(t) whose (Nyquist) sample valuesm[n] = m
(
n 1

2B

)
agrees with mn by the reconstruction equation (76).
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6.35. A bandpass signal whose spectrum exists over a frequency band
fc − B

2 < |f | < fc + B
2 has a bandwidth B Hz. Such a signal is also

uniquely determined by samples taken at above the Nyquist frequency 2B.
The sampling theorem is generally more complex in such case. It uses two
interlaced sampling trains, each at a rate of fs > B samples per second
(known as second-order sampling). [5, p 304]

6.4 Triangular (Linear) Interpolation
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Figure 47: Triangular (Linear) In-
terpolation

6.36. When linear interpolation is used, high frequency content of G(f) is
attenuated and (small part of) the replicas at even higher freqencies (which
do not exist before) are also introduced.
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Figure 48: Triangular (Linear) Interpolation: Effects on Gr(t)
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